Combine DataFrames along a particular axis (rows or columns) with pd.concat().
Row-wise
Column-wise
With Keys
import pandas as pd
# Sample DataFrames
df1 = pd.DataFrame({
'A': ['A0', 'A1', 'A2'],
'B': ['B0', 'B1', 'B2']
})
df2 = pd.DataFrame({
'A': ['A3', 'A4', 'A5'],
'B': ['B3', 'B4', 'B5']
})
# Concatenate row-wise (axis=0)
result = pd.concat([df1, df2], axis=0)
print("Row-wise concatenation:")
print(result)
# Sample DataFrames with different columns
df3 = pd.DataFrame({
'C': ['C0', 'C1', 'C2'],
'D': ['D0', 'D1', 'D2']
})
# Concatenate column-wise (axis=1)
result = pd.concat([df1, df3], axis=1)
print("Column-wise concatenation:")
print(result)
# Concatenate with keys for hierarchical indexing
result = pd.concat([df1, df2], keys=['df1', 'df2'])
print("Concatenation with keys:")
print(result)
# Access data using the keys
print("\nAccessing data with keys:")
print("df1 data:")
print(result.loc['df1'])
# Reset index to convert keys to a column
print("\nAfter reset_index():")
print(result.reset_index())
Note: When concatenating DataFrames with different columns, missing values will be filled with
NaN.